Computes the Matrix Profile and Profile Index for a range of query window sizes
valmod( ..., window_min, window_max, heap_size = 50, exclusion_zone = getOption("tsmp.exclusion_zone", 1/2), lb = TRUE, verbose = getOption("tsmp.verbose", 2) )
... | a |
---|---|
window_min | an |
window_max | an |
heap_size | an |
exclusion_zone | a |
lb | a |
verbose | an |
Returns a Valmod
object, a list
with the matrix profile mp
, profile index pi
left and right matrix profile lmp
, rmp
and profile index lpi
, rpi
, best window size w
for each index and exclusion zone ez
. Additionally: evolution_motif
the best motif distance
per window size, and non-length normalized versions of mp
, pi
and w
: mpnn
, pinn
and wnn
.
This algorithm uses an exact algorithm based on a novel lower bounding technique, which is
specifically designed for the motif discovery problem. verbose
changes how much information
is printed by this function; 0
means nothing, 1
means text, 2
adds the progress bar,
3
adds the finish sound. exclusion_zone
is used to avoid trivial matches; if a query data
is provided (join similarity), this parameter is ignored.
Paper that implements skimp()
suggests that window_max / window_min > than 1.24 begins to
weakening pruning in valmod()
.
Linardi M, Zhu Y, Palpanas T, Keogh E. VALMOD: A Suite for Easy and Exact Detection of Variable Length Motifs in Data Series. In: Proceedings of the 2018 International Conference on Management of Data - SIGMOD '18. New York, New York, USA: ACM Press; 2018. p. 1757-60.
Website: http://www.cs.ucr.edu/~eamonn/MatrixProfile.html
Other matrix profile computations:
mstomp_par()
,
scrimp()
,
stamp_par()
,
stomp_par()
,
tsmp()
mp <- valmod(mp_toy_data$data[1:200, 1], window_min = 30, window_max = 40, verbose = 0) if (FALSE) { ref_data <- mp_toy_data$data[, 1] query_data <- mp_toy_data$data[, 2] # self similarity mp <- valmod(ref_data, window_min = 30, window_max = 40) # join similarity mp <- valmod(ref_data, query_data, window_min = 30, window_max = 40) }