Computes the F-Score of a SDTS prediction.
sdts_score(pred, gtruth, beta = 1)
pred | a |
---|---|
gtruth | a |
beta | a |
Returns a list
with f_score
, precision
and recall
.
beta
is used to balance F-score towards recall (>1
) or precision (<1
).
Yeh C-CM, Kavantzas N, Keogh E. Matrix profile IV: Using Weakly Labeled Time Series to Predict Outcomes. Proc VLDB Endow. 2017 Aug 1;10(12):1802-12.
Website: https://sites.google.com/view/weaklylabeled
Other Scalable Dictionaries:
sdts_predict()
,
sdts_train()
# This is a fast toy example and results are useless. For a complete result, run the code inside #' Not run' section below. w <- c(110, 220) subs <- 11000:20000 tr_data <- mp_test_data$train$data[subs] tr_label <- mp_test_data$train$label[subs] te_data <- mp_test_data$test$data[subs] te_label <- mp_test_data$test$label[subs] model <- sdts_train(tr_data, tr_label, w, verbose = 0) predict <- sdts_predict(model, te_data, round(mean(w))) sdts_score(predict, te_label, 1) if (FALSE) { windows <- c(110, 220, 330) model <- sdts_train(mp_test_data$train$data, mp_test_data$train$label, windows) predict <- sdts_predict(model, mp_test_data$test$data, round(mean(windows))) sdts_score(predict, mp_test_data$test$label, 1) }