Fast Low-cost Online Semantic Segmentation (FLOSS)
floss( .mp, new_data, data_window, threshold = 1, exclusion_zone = NULL, chunk_size = NULL, keep_cac = TRUE )
| .mp | a  | 
|---|---|
| new_data | a  | 
| data_window | an  | 
| threshold | a  | 
| exclusion_zone | if a  | 
| chunk_size | an  | 
| keep_cac | a  | 
Returns the input .mp object new names: cac the corrected arc count, cac_finalthe
combination of cac after repeated calls of floss(), floss with the location of semantic
changes and floss_vals with the normalized arc count value of the semantic change positions.
Gharghabi S, Ding Y, Yeh C-CM, Kamgar K, Ulanova L, Keogh E. Matrix Profile VIII: Domain Agnostic Online Semantic Segmentation at Superhuman Performance Levels. In: 2017 IEEE International Conference on Data Mining (ICDM). IEEE; 2017. p. 117-26.
Website: https://sites.google.com/site/onlinesemanticsegmentation/
Website: http://www.cs.ucr.edu/~eamonn/MatrixProfile.html
Other Semantic Segmentations: 
floss_cac(),
floss_extract(),
fluss_cac(),
fluss_extract(),
fluss_score(),
fluss()
data <- mp_fluss_data$tilt_abp$data[1:1000] new_data <- mp_fluss_data$tilt_abp$data[1001:1010] new_data2 <- mp_fluss_data$tilt_abp$data[1011:1020] w <- 80 mp <- tsmp(data, window_size = w, verbose = 0) data_window <- 1000 mp <- floss(mp, new_data, data_window) mp <- floss(mp, new_data2, data_window)